Data Vector Search
The Data Vector Search API allows you to retrieve processed document chunks from your data stores. See the Data Vector Search API reference and response types for more details.
Get File Chunks
You can retrieve chunks from files in a data store using the get_file_chunks method. This allows you to access processed document chunks with their scores and metadata for analysis or further processing.
Synchronous Usage
from airia import AiriaClient
client = AiriaClient(api_key="your_api_key")
# Get file chunks with default pagination
chunks_response = client.data_vector_search.get_file_chunks(
data_store_id="your_data_store_id",
file_id="your_file_id"
)
# Access the chunks
for chunk in chunks_response.chunks:
print(f"Chunk: {chunk.chunk}")
print(f"Document: {chunk.document_name}")
if chunk.score is not None:
print(f"Score: {chunk.score}")
if chunk.sequence_number is not None:
print(f"Sequence: {chunk.sequence_number}")
Asynchronous Usage
from airia import AiriaAsyncClient
import asyncio
async def main():
client = AiriaAsyncClient(api_key="your_api_key")
# Get file chunks with default pagination
chunks_response = await client.data_vector_search.get_file_chunks(
data_store_id="your_data_store_id",
file_id="your_file_id"
)
# Access the chunks
for chunk in chunks_response.chunks:
print(f"Chunk: {chunk.chunk}")
print(f"Document: {chunk.document_name}")
if chunk.score is not None:
print(f"Score: {chunk.score}")
if chunk.sequence_number is not None:
print(f"Sequence: {chunk.sequence_number}")
await client.close()
asyncio.run(main())